**Total Least Squares** (TLS) is an alternative for OLS (**Ordinary Least Squares**). It is a form of **orthogonal regression** and also deals with the problem of EIV (**Errors-in-Variables**).

The standard OLS model is \[\color{darkblue}y = \color{darkblue}X\color{darkred}\beta + \color{darkred}\varepsilon\] where we minimize the sum-of-squares of the residuals \[\min ||\color{darkred}\varepsilon||_2^2\] We can interpret \(\color{darkred}\varepsilon\) as the error in \(\color{darkblue}y\).

In TLS, we also allow for errors in \(\color{darkblue}X\). The model becomes \[\color{darkblue}y+\color{darkred}\varepsilon=(\color{darkblue}X+\color{darkred}E)\color{darkred}\beta\] Note that we made a sign change in \(\color{darkred}\varepsilon\). This is pure aesthetics: to make the equation more symmetric looking. The objective is specified as \[\min \> ||\left(\color{darkred}\varepsilon \> \color{darkred}E\right)||_F\] i.e. the Frobenius norm of the matrix formed by \(\color{darkred}\varepsilon\) and \(\color{darkred}E\). The Frobenius norm is just \[||A||_F=\sqrt{\sum_{i,j}a_{i,j}^2}\] We can drop the square root from the objective (the solution will remain the same, but we got rid of a non-linear function with a possible problem near zero: the gradient is not defined there). The remaining problem is a non-convex quadratic problem which can be solved with global MINLP solvers such as Baron or with a global quadratic solver like Gurobi.