This book [1] on DEA models has an accompanying website with all the GAMS models [2].
Of course, I'll be doing some nitpicking on the GAMS code.
I am a full-time consultant and provide services related to the design, implementation and deployment of mathematical programming, optimization and data-science applications. I also teach courses and workshops. Usually I cannot blog about projects I am doing, but there are many technical notes I'd like to share. Not in the least so I have an easy way to search and find them again myself. You can reach me at erwin@amsterdamoptimization.com.
This book [1] on DEA models has an accompanying website with all the GAMS models [2].
Of course, I'll be doing some nitpicking on the GAMS code.
When I deal with regional codes such as FIPS[1] and HUC[2], CSV file readers often mutilate my regions. Here is an example in R:
Data Envelopment Analysis (DEA) models are somewhat special. They typically consist of small LPs, of which a whole bunch have to be solved. The CCR formulation (after [1]), for the \(i\)-th DMU (Decision Making Unit), can be stated as [2]:
CCR LP Model |
---|
\[\begin{align} \max \>& \color{darkred}{\mathit{efficiency}}_i=\sum_{\mathit{outp}} \color{darkred}u_{{\mathit{outp}}} \cdot \color{darkblue}y_{i,{\mathit{outp}}} \\ & \sum_{\mathit{inp}} \color{darkred}v_{{\mathit{inp}}} \cdot \color{darkblue}x_{i,{\mathit{inp}}} = 1 \\ & \sum_{\mathit{outp}} \color{darkred}u_{{\mathit{outp}}} \cdot \color{darkblue}y_{j,{\mathit{outp}}} \le \color{darkred}v_{{\mathit{inp}}} \cdot \color{darkblue}x_{j,{\mathit{inp}}} && \forall j \\ & \color{darkred}u_{{\mathit{outp}}} \ge 0, \color{darkred}v_{{\mathit{inp}}} \ge 0 \end{align}\] |
In [1], I discussed some LP and MIP formulations for the Minimum Spanning Tree (MST) problem.
Little example. Here, we try to pack \(n\) circles with a given radius \(r_i\) into a larger disc with an unknown radius \(R\). The goal is to minimize \(R\). The underlying model is simple:
Packing of Circles |
---|
\[\begin{align} \min\> & \color{darkred}R \\ & \sum_c \left(\color{darkred}p_{i,c}-\color{darkred}p_{j,c}\right)^2 \ge \left(\color{darkblue}r_i+\color{darkblue}r_j\right)^2 & \forall i\lt j \\ & \sum_c \color{darkred}p_{i,c}^2 \le \left(\color{darkred}R-\color{darkblue}r_i\right)^2 & \forall i \\ & \color{darkred}R \ge 0\\ & c \in \{x,y\} \\ \end{align}\] |
Minor rant: I just don't understand the appeal of the tableau method. It looks to me like an invention for torturing undergrad students. Most of all, it is not very structure-revealing; it does not help you understand the underlying concepts. But about 100% of the LP textbooks insist we should learn that first.
Last friday, 6/28, new PCE (Personal Consumption Expenditures Price Index) data were released. The year-on-year inflation numbers decreased from 2.7% last month to 2.6% [1]:
Let's see how the popular press reports this [2]:
The goal of this exercise is to fill a square area \([0,250]\times[0,100]\) with 25 circles. The model can choose the \(x\) and \(y\) coordinates of the center of each circle and the radius. So we have as variables \(\color{darkred}x_i\), \(\color{darkred}y_i\), and \(\color{darkred}r_i\). The circles placed inside the area should not overlap. The objective is to maximize the total area covered.
A solution is: