Wednesday, October 31, 2018

Strange objective

In [1], a question was posted how to use the \(\mathit{sign}()\) function in the SCIP solver. The problem to solve is

argmax(w) sum(sign(Aw) == sign(b)) 

This is a strange objective. Basically: find \(w\), with \(v=Aw\) such that we maximize the number of  \(v_i\) having the same sign as \(b_i\). I have never seen such an objective.

As \(A\) and \(b\) are constants, we can precompute \[ \beta_i = \mathrm{sign}(b_i)\] This simplifies the situation a little bit (but I will not need it below).

A different way to say "\(v_i\) and \(b_i\) have the same sign" is to state: \[ v_i b_i > 0 \] I assumed here \(b_i \ne 0\). Similarly, the constraint \( v_i b_i < 0\) means: "\(v_i\) and \(b_i\) have the opposite sign."

If we introduce binary variables: \[\delta_i = \begin{cases} 1 & \text{if $ v_i b_i > 0$}\\ 0 & \text{otherwise}\end{cases}\] a model can look like: \[\begin{align} \max & \sum_i \delta_i \\ &\delta_i =1 \Rightarrow \sum_j a_{i,j} b_i w_j > 0 \\ & \delta_i \in \{0,1\}\end{align}\] The implication can be implemented using indicator constraints, so we have now a linear MIP model.

Notes:

  • I replaced the \(\gt\) constraint by \(\sum_j a_{i,j} b_i w_j \ge 0.001\) 
  • If the \(b_i\) are very small or very large we can replace them by \(\beta_i\), i.e. \(\sum_j a_{i,j} \beta_i w_j \gt 0\)
  • The case where some \(b_i=0\) is somewhat ignored here. In this model, we assume \(\delta_i=0\) for this special case. 
  • We can add explicit support for  \(b_i=0\) by:  \[\begin{align} \max & \sum_i \delta_i \\ &\delta_i =1 \Rightarrow \sum_j a_{i,j} b_i w_j > 0 && \forall i | b_i\ne 0 \\ & \delta_i =1 \Rightarrow \sum_j a_{i,j} w_j = 0 && \forall i | b_i = 0  \\ & \delta_i \in \{0,1\}\end{align}\]
  • We could model this with binary variables or SOS1 variables. Binary variables require big-M values. It is not always easy to find good values for them. The advantage of indicator constraints is that they allow an intuitive formulation of the problem while not using big-M values. 
  • Many high-end solvers (Cplex, Gurobi, Xpress, SCIP) support indicator constraints. Modeling systems like AMPL also support them.

Test with small data set


Let's do a test with a small random data set.



----     17 PARAMETER a  random matrix

             j1          j2          j3          j4          j5

i1       -0.657       0.687       0.101      -0.398      -0.416
i2       -0.552      -0.300       0.713      -0.866 4.213380E-4
i3        0.996       0.157       0.982       0.525      -0.739
i4        0.279      -0.681      -0.500       0.338      -0.129
i5       -0.281      -0.297      -0.737      -0.700       0.178
i6        0.662      -0.538       0.331       0.552      -0.393
i7       -0.779       0.005      -0.680       0.745      -0.470
i8       -0.428       0.188       0.445       0.256      -0.072
i9       -0.173      -0.765      -0.372      -0.907      -0.323
i10      -0.636       0.291       0.121       0.540      -0.404
i11       0.322       0.512       0.255      -0.432      -0.827
i12      -0.795       0.283       0.091      -0.937       0.585
i13      -0.854      -0.649       0.051       0.500      -0.644
i14      -0.932       0.170       0.242      -0.221      -0.283
i15      -0.514      -0.507      -0.739       0.867      -0.240
i16       0.567      -0.400      -0.749       0.498      -0.862
i17      -0.596      -0.990      -0.461 -2.97050E-4      -0.697
i18      -0.652      -0.339      -0.366      -0.356       0.928
i19       0.987      -0.260      -0.254       0.544      -0.207
i20       0.826      -0.761       0.471      -0.889       0.153
i21      -0.897      -0.988      -0.198       0.040       0.258
i22      -0.549      -0.208      -0.448      -0.695       0.873
i23      -0.155      -0.731      -0.228      -0.251      -0.463
i24       0.897      -0.622      -0.405      -0.851      -0.197
i25      -0.797      -0.232      -0.352      -0.616      -0.775


----     17 PARAMETER b  random rhs

i1   0.193,    i2   0.023,    i3  -0.910,    i4   0.566,    i5   0.891,    i6   0.193,    i7   0.215,    i8  -0.275
i9   0.188,    i10  0.360,    i11  0.013,    i12 -0.681,    i13  0.314,    i14  0.048,    i15 -0.751,    i16  0.973
i17 -0.544,    i18  0.351,    i19  0.554,    i20  0.865,    i21 -0.598,    i22 -0.406,    i23 -0.606,    i24 -0.507
i25  0.293


----     17 PARAMETER beta  sign of b

i1   1.000,    i2   1.000,    i3  -1.000,    i4   1.000,    i5   1.000,    i6   1.000,    i7   1.000,    i8  -1.000
i9   1.000,    i10  1.000,    i11  1.000,    i12 -1.000,    i13  1.000,    i14  1.000,    i15 -1.000,    i16  1.000
i17 -1.000,    i18  1.000,    i19  1.000,    i20  1.000,    i21 -1.000,    i22 -1.000,    i23 -1.000,    i24 -1.000
i25  1.000


----     53 VARIABLE w.L  

j1 -0.285,    j2 -0.713,    j3 -0.261,    j4 -0.181,    j5 -0.630


----     53 PARAMETER v  sum(j, a(i,j)*w(j))

i1   0.005,    i2   0.342,    i3  -0.282,    i4   0.556,    i5   0.498,    i6   0.256,    i7   0.557,    i8  -0.129
i9   1.059,    i10  0.099,    i11  0.076,    i12 -0.197,    i13  1.008,    i14  0.299,    i15  0.695,    i16  0.771
i17  1.435,    i18  0.003,    i19  0.002,    i20  0.249,    i21  0.843,    i22 -0.002,    i23  0.962,    i24  0.571
i25  1.084


----     53 VARIABLE delta.L  

i1  1.000,    i2  1.000,    i3  1.000,    i4  1.000,    i5  1.000,    i6  1.000,    i7  1.000,    i8  1.000
i9  1.000,    i10 1.000,    i11 1.000,    i12 1.000,    i13 1.000,    i14 1.000,    i16 1.000,    i18 1.000
i19 1.000,    i20 1.000,    i22 1.000,    i25 1.000


----     53 VARIABLE z.L                   =       20.000  objective variable

This means, for this 25 row problem we can find \(w\)'s such that 20 rows yield the same sign as \(b_i\).


References


  1. SCIP What is the function for sign?, https://stackoverflow.com/questions/53030430/scip-what-is-the-function-for-sign

No comments:

Post a Comment