Introduction
LCP Problem |
---|
\[\begin{align} &\text{Find $\color{darkred}x\ge 0,\color{darkred}w\ge 0$ such that:}\\ & \color{darkred}x^T\color{darkred}w = 0 \\ &\color{darkred}w =\color{darkblue}M \color{darkred}x + \color{darkblue}q\end{align}\] |
I am a full-time consultant and provide services related to the design, implementation and deployment of mathematical programming, optimization and data-science applications. I also teach courses and workshops. Usually I cannot blog about projects I am doing, but there are many technical notes I'd like to share. Not in the least so I have an easy way to search and find them again myself. You can reach me at erwin@amsterdamoptimization.com.
LCP Problem |
---|
\[\begin{align} &\text{Find $\color{darkred}x\ge 0,\color{darkred}w\ge 0$ such that:}\\ & \color{darkred}x^T\color{darkred}w = 0 \\ &\color{darkred}w =\color{darkblue}M \color{darkred}x + \color{darkblue}q\end{align}\] |
In Statistics (nowadays called Data Science or A.I. for public relations reasons), clustering is one of the most popular techniques available. Of course, nothing beats linear regression in the popularity contest. Here, I like to discuss two clustering models: \(k\)-means and \(k\)-medoids. For these models, there exist well-defined equivalent Mixed-Integer Programming models. In practice, they don't work very well except for small data sets. I think they are still useful to discuss for different reasons: