Picture of the efficient points |
In [1], a small multi-objective non-convex MINLP problem is stated:
Let's see how one could approach a problem like this.
First of all, multi-objective problems don't have an obvious single optimal solution. Instead, we often generate a (subset of) the points that are non-dominated. These points form the efficient frontier. As this is a pure integer problem, the efficient frontier is not a line (surface) but just a collection of points.
First, let's clean up the model a little bit. Objective 1 cannot be evaluated for \(\color{darkred}x_1=0\), so we introduce a lower bound of 1 on \(\color{darkred}x_1\).
Here I want to demonstrate two very different approaches. The first is just to enumerate all feasible points \((\color{darkred}x_1,\color{darkred}x_2)\), evaluate the objective functions, and then filter out dominated solutions by a Pareto sorting algorithm. The second approach is to have an optimization model generate one Pareto-efficient point at a time, using a weighted objective function. Then we add constraints so that we don't generate new points that are dominated. We solve this model several times until the model becomes infeasible.
The solution sets these two methods are finding are identical. As they should be: they both enumerate the complete Pareto optimal set.
Approach 1: No optimization
import pandas as pd pd.set_option("max_rows", 10) # # just some values # c0 = 1.4; c1 = 1; c2 = 2; c3 = 3; c4 = 4; c5 = 5 d1 = 1; d2 = 2; d3 = 3; d4 = 4; d5 = 5 e1 = 1 a1 = 12; a2 = 8; a3 = 15 # list of lists L = [] def evalf(x1,x2): f1 = c0 + (c1+c2*x2+c5*x2**2)/float(x1) + c3*x1 + c4*x2 f2 = d1*x1 + d2*x2 + d3*x1**2 + d4*x2**2 + d5*x1*x2 f3 = -e1*x2 return f1,f2,f3 for x1 in range(1,a1+1): for x2 in range(0,min(a2,a3-x1)+1): f1,f2,f3 = evalf(x1,x2) L.append([x1,x2,f1,f2,f3]) # store in data frame df = pd.DataFrame(L,columns=['x1','x2','f1','f2','f3']) df
Feasible solutions |
pd.DataFrame(eps_sort([L], [2,3,4]),columns=['x1','x2','f1','f2','f3'])
Non-dominated solutions |
Approach 2: optimization model to generate non-dominated points
Base model |
---|
\[\begin{align}\min&\sum_k \color{darkblue}w_k \cdot\color{darkred}f_k \\ & \color{darkred}f_1 = \color{darkblue}c_0 + (\color{darkblue}c_1+\color{darkblue}c_2\cdot \color{darkred}x_2+\color{darkblue}c_5\cdot\color{darkred}x_2^2)/\color{darkred}x_1 + \color{darkblue}c_3\cdot \color{darkred}x_1 + \color{darkblue}c_4\cdot \color{darkred}x_2 \\ & \color{darkred}f_2 = \color{darkblue}d_1\cdot \color{darkred}x_1 + \color{darkblue}d_2\cdot \color{darkred}x_2 + \color{darkblue}d_3\cdot \color{darkred}x_1^2 + \color{darkblue}d_4\cdot \color{darkred}x_2^2 + \color{darkblue}d_5\cdot \color{darkred}x_1\cdot \color{darkred}x_2 \\ & \color{darkred}f_3 = -\color{darkblue}e_1\cdot \color{darkred}x_2 \\ & \color{darkred}x_1 + \color{darkred}x_2 \le \color{darkblue}a_3 \\ & \color{darkred}x_1 \in \{1,\dots,\color{darkblue}a_1\} \\ & \color{darkred}x_2 \in \{0,\dots,\color{darkblue}a_2\}\end{align}\] |
We want to find the box for the \(\color{darkred}f\)-space. We do this by solving the model with different values for the weights \(\color{darkblue}w_k\). The results are:
---- 92 PARAMETER fbox objective box lo up obj1 5.400 373.400 obj2 4.000 706.000 obj3 -8.000 ---- 95 PARAMETER M big-M obj1 368.000, obj2 702.000, obj3 8.000
- A point found using positive weights \(\color{darkblue}w_k\) will be on the efficient frontier. That means: it will never be dominated by other feasible points.
- I used weights \(\color{darkblue}w_k=1\).
- We add constraints to make sure that a new point is both different and not dominated by earlier points. For this, we require that one of the objectives needs to improve. We can write this as a set of constraints: \[\begin{align} & \color{darkred}f_k \le \color{darkblue}{\mathit{points}}_{p,k} - \color{darkblue}\epsilon + (\color{darkblue}M_k + \color{darkblue}\epsilon) \cdot (1-\color{darkred}\delta_{p,k}) && \forall p,k\\ &\sum_k\color{darkred}\delta_{p,k} \ge 1 && \forall p \\ & \color{darkred}\delta_{p,k}\in \{0,1\}\end{align}\] Here \(\color{darkblue}{\mathit{points}}_{p,k}\) are the objective values of previously found points, and \(\color{darkblue}\epsilon\gt 0\) is a small tolerance to find improving function values. Without this we may find the same point again. I used \(\color{darkblue}\epsilon=0.01\). This equation is stating what it means if a point is non-dominated. It is a useful concept to know.
- The algorithm will stop when there are no more non-dominated points to be found.
- I used Baron to solve the MINLP subproblems.
- This approach can only be used for fairly small problems. Finding thousands of points would be too expensive.
---- 159 PARAMETER solutions non-dominated solutions x1 x2 obj1 obj2 obj3 point1 1.000 5.400 4.000 point2 1.000 1.000 16.400 15.000 -1.000 point3 2.000 1.000 15.400 30.000 -1.000 point4 1.000 2.000 37.400 34.000 -2.000 point5 2.000 2.000 27.900 54.000 -2.000 point6 3.000 2.000 26.733 80.000 -2.000 point7 1.000 3.000 68.400 61.000 -3.000 point8 2.000 3.000 45.400 86.000 -3.000 point9 3.000 3.000 39.733 117.000 -3.000 point10 4.000 3.000 38.400 154.000 -3.000 point11 2.000 4.000 67.900 126.000 -4.000 point12 1.000 4.000 109.400 96.000 -4.000 point13 3.000 4.000 56.067 162.000 -4.000 point14 4.000 4.000 51.650 204.000 -4.000 point15 2.000 5.000 95.400 174.000 -5.000 point16 3.000 5.000 75.733 215.000 -5.000 point17 1.000 5.000 160.400 139.000 -5.000 point18 5.000 4.000 50.200 252.000 -4.000 point19 4.000 5.000 67.400 262.000 -5.000 point20 2.000 6.000 127.900 230.000 -6.000 point21 3.000 6.000 98.733 276.000 -6.000 point22 5.000 5.000 63.600 315.000 -5.000 point23 1.000 6.000 221.400 190.000 -6.000 point24 4.000 6.000 85.650 328.000 -6.000 point25 6.000 5.000 62.067 374.000 -5.000 point26 2.000 7.000 165.400 294.000 -7.000 point27 5.000 6.000 79.000 386.000 -6.000 point28 3.000 7.000 125.067 345.000 -7.000 point29 7.000 5.000 61.829 439.000 -5.000 point30 4.000 7.000 106.400 402.000 -7.000 point31 6.000 6.000 75.567 450.000 -6.000 point32 1.000 7.000 292.400 249.000 -7.000 point33 5.000 7.000 96.400 465.000 -7.000 point34 2.000 8.000 207.900 366.000 -8.000 point35 3.000 8.000 154.733 422.000 -8.000 point36 7.000 6.000 73.971 520.000 -6.000 point37 4.000 8.000 129.650 484.000 -8.000 point38 6.000 7.000 90.733 534.000 -7.000 point39 5.000 8.000 115.800 552.000 -8.000 point40 8.000 6.000 73.525 596.000 -6.000 point41 1.000 8.000 373.400 316.000 -8.000 point42 7.000 7.000 87.543 609.000 -7.000 point43 6.000 8.000 107.567 626.000 -8.000 point44 8.000 7.000 85.900 690.000 -7.000 point45 7.000 8.000 102.543 706.000 -8.000
Of course, there are many variants of this model possible. For instance, we can prevent repeating points explicitly by no-good cuts.
References
- How to linearized a non-convex optimization objective function?, https://or.stackexchange.com/questions/7013/how-to-linearize-a-non-convex-optimization-objective-function
- Pareto.py, https://github.com/matthewjwoodruff/pareto.py
Appendix: GAMS model
$ontext |
No comments:
Post a Comment