## Monday, August 21, 2017

### Quantiles

Calculating quantiles is a standard way to summarize data. In the example below we have some small random data p(i,j,k) where we want to calculate quantiles at the 0, 25, 50, 75, and 100% level for each (i,j):

 ----      9 PARAMETER p                 k1          k2          k3          k4          k5          k6          k7          k8 i1.j1      18.003      84.483      55.487      30.813      29.929      23.181      35.633      85.771i1.j2       7.644      50.521      99.814      58.295      99.122      76.463      13.939      64.332i1.j3      16.792      25.758      67.224      44.100      36.610      35.793      14.018      15.860i2.j1      59.322      83.258      23.851      66.908      77.810      31.062      11.939      50.736i2.j2      16.857      87.374      27.246      29.296      59.802      72.549      63.197      46.916i2.j3      41.917      12.652      32.107       5.609      34.516      19.028      64.927      56.514 ----    143 PARAMETER quantiles                 0%         25%         50%         75%        100% i1.j1      18.003      28.242      33.223      62.736      85.771i1.j2       7.644      41.375      61.313      82.128      99.814i1.j3      14.018      16.559      30.775      38.483      67.224i2.j1      11.939      29.259      55.029      69.633      83.258i2.j2      16.857      28.783      53.359      65.535      87.374i2.j3       5.609      17.434      33.312      45.566      64.927

In GAMS this is not so easy. Here is one way:

 set i /i1*i2/    j /j1*j3/    k /k1*k8/    q /'0%', '25%', '50%', '75%', '100%'/;parameter p(i,j,k);p(i,j,k) = uniform(1,100);display p;parameter   v(k) 'vector to be sorted'   r(k) 'sorting rank'   perc0(q) /'0%' EPS, '25%' 25, '50%' 50, '75%' 75, '100%' 100 /   perc(q) 'percentiles'   quantiles(i,j,q);\$libinclude rankloop((i,j),  v(k) = p(i,j,k);  perc(q) = perc0(q);\$ libinclude rank v k r perc  quantiles(i,j,q) = perc(q););display quantiles;

We use here the rank utility by Tom Rutherford. A disadvantage is that it is designed to work on vectors. That means we need to loop to extract a k-vector. Under the hood a GDX file is written for each vector, a program called gdxrank is called, and another GDX file is written with the ranks of each vector element. For very large data sets this turns out to be very slow.

Note that in the data statement for perc0 we use EPS instead of 0. This on purpose: EPS will survive the trip to gdxrank, while a pure zero is not stored and not transmitted. If we would have used 0 instead of EPS we would have seen:

 ----    142 PARAMETER quantiles                25%         50%         75%        100% i1.j1      28.242      33.223      62.736      85.771i1.j2      41.375      61.313      82.128      99.814i1.j3      16.559      30.775      38.483      67.224i2.j1      29.259      55.029      69.633      83.258i2.j2      28.783      53.359      65.535      87.374i2.j3      17.434      33.312      45.566      64.927
##### How would this look in R?

R has the quantile function to calculate percentiles of a vector. We can use the by function to apply this on a slice of the data. This can look like:

> df

i  j  k     value

1  i1 j1 k1 18.002966

2  i1 j1 k2 84.483404

3  i1 j1 k3 55.487160

4  i1 j1 k4 30.812652

5  i1 j1 k5 29.929000

6  i1 j1 k6 23.181234

7  i1 j1 k7 35.633220

8  i1 j1 k8 85.770764

9  i1 j2 k1  7.644259

10 i1 j2 k2 50.520856

11 i1 j2 k3 99.813645

12 i1 j2 k4 58.294604

13 i1 j2 k5 99.122171

14 i1 j2 k6 76.462796

15 i1 j2 k7 13.938556

16 i1 j2 k8 64.332157

17 i1 j3 k1 16.792269

18 i1 j3 k2 25.757973

19 i1 j3 k3 67.223932

20 i1 j3 k4 44.100282

21 i1 j3 k5 36.610326

22 i1 j3 k6 35.792695

23 i1 j3 k7 14.017667

24 i1 j3 k8 15.860077

25 i2 j1 k1 59.322251

26 i2 j1 k2 83.258388

27 i2 j1 k3 23.850758

28 i2 j1 k4 66.907712

29 i2 j1 k5 77.809903

30 i2 j1 k6 31.062189

31 i2 j1 k7 11.938737

32 i2 j1 k8 50.736102

33 i2 j2 k1 16.857103

34 i2 j2 k2 87.373769

35 i2 j2 k3 27.246340

36 i2 j2 k4 29.295618

37 i2 j2 k5 59.801636

38 i2 j2 k6 72.549188

39 i2 j2 k7 63.196619

40 i2 j2 k8 46.915989

41 i2 j3 k1 41.917392

42 i2 j3 k2 12.651840

43 i2 j3 k3 32.107014

44 i2 j3 k4  5.608600

45 i2 j3 k5 34.516477

46 i2 j3 k6 19.027860

47 i2 j3 k7 64.926986

48 i2 j3 k8 56.513809

> q <- by(df\$value,list(df\$i,df\$j),quantile)

> q

: i1

: j1

0%      25%      50%      75%     100%

18.00297 28.24206 33.22294 62.73622 85.77076

------------------------------------------------------------------------

: i2

: j1

0%      25%      50%      75%     100%

11.93874 29.25933 55.02918 69.63326 83.25839

------------------------------------------------------------------------

: i1

: j2

0%       25%       50%       75%      100%

7.644259 41.375281 61.313381 82.127640 99.813645

------------------------------------------------------------------------

: i2

: j2

0%      25%      50%      75%     100%

16.85710 28.78330 53.35881 65.53476 87.37377

------------------------------------------------------------------------

: i1

: j3

0%      25%      50%      75%     100%

14.01767 16.55922 30.77533 38.48282 67.22393

------------------------------------------------------------------------

: i2

: j3

0%      25%      50%      75%     100%

5.60860 17.43385 33.31175 45.56650 64.92699

 >

We can compute all quantiles in a oneliner script. Although the results are correct, it would be nice if we can organize the results in a proper data frame for further processing. Here is my first attempt:

 > cbind(unique(df[,1:2]), +       matrix(unlist(q),ncol=5,byrow=T,dimnames=list(NULL,names(q[[1,1]]))) + )     i  j        0%      25%      50%      75%     100% 1  i1 j1 18.002966 28.24206 33.22294 62.73622 85.77076 9  i1 j2 11.938737 29.25933 55.02918 69.63326 83.25839 17 i1 j3  7.644259 41.37528 61.31338 82.12764 99.81365 25 i2 j1 16.857103 28.78330 53.35881 65.53476 87.37377 33 i2 j2 14.017667 16.55922 30.77533 38.48282 67.22393 41 i2 j3  5.608600 17.43385 33.31175 45.56650 64.92699

The unique function populates the leftmost columns i and j. The unlist operation will make one long vector of the quantiles. We make the matrix of the correct size by using ncol=5. Finally, as the column names are lost in this operation, we re-establish them by dimnames.

Unfortunately this is wrong as unique populates the columns i and j in a different order than by does. The easy fix is as follows:

 `> q <- by(df\$value,list(df\$j,df\$i),quantile)> qdf <- cbind(unique(df[,1:2]),+          matrix(unlist(q),ncol=5,byrow=T,dimnames=list(NULL,names(q[[1,1]])))+       )> qdf    i  j        0%      25%      50%      75%     100%1  i1 j1 18.002966 28.24206 33.22294 62.73622 85.770769  i1 j2  7.644259 41.37528 61.31338 82.12764 99.8136517 i1 j3 14.017667 16.55922 30.77533 38.48282 67.2239325 i2 j1 11.938737 29.25933 55.02918 69.63326 83.2583933 i2 j2 16.857103 28.78330 53.35881 65.53476 87.3737741 i2 j3  5.608600 17.43385 33.31175 45.56650 64.92699`

The change is in the order of list(df\$j,df\$i) passed on to by. Now unique and q have the same order.

##### Performance

If we change the data to:

 set i /i1*i50/    j /j1*j50/    k /k1*k50/    q /'0%', '25%', '50%', '75%', '100%'/;

we see the following timings:

• GAMS rank loop: 161 seconds
• R calculate quantiles: 1.5 seconds
• R convert results into a data frame: 0.08 seconds