Tuesday, August 27, 2013

2D Interpolation With SOS2 variables

Using SOS2 variables to implement a 1D interpolation scheme is fairly easy (see: http://yetanothermathprogrammingconsultant.blogspot.com/2009/06/gams-piecewise-linear-functions-with.html). However, a 2D problem is already much more difficult. Here is an example taken from the Lindo web site:

$ontext

 
2D Interpolation with SOS2 variables

 
See: http://www.lindo.com/cgi-bin/modelf.cgi?Piecelin2Dsos3.txt;LINGO

$offtext


$set  n1 3
$set  n2 3
$eval n3 (%n1%+%n2%-1)


sets
   i
/i1*i%n1%/
   j
/j1*j%n2%/
   k
/k1*k%n3%/
;

table data(i,j,*)
          
x   y   f

i1.j1    195 1800  20
i1.j2    217 1900  26
i1.j3    240 2000  30
i2.j1    195 3500  52
i2.j2    217 3600  61
i2.j3    240 4100  78
i3.j1    195 5100  69
i3.j2    217 5200  80
i3.j3    240 5600  93
;

parameters
   xv(i,j)
   yv(i,j)
   fv(i,j)
;
xv(i,j) = data(i,j,
'x');
yv(i,j) = data(i,j,
'y'
);
fv(i,j) = data(i,j,
'f'
);

sos2 variables

  wx(i)
  wy(j)
  wd(k)
;



positive variables
  WGT(i,j)
  xa
  ya
  fa
;


variables z;

equations

   xconvex
   yconvex
   dconvex
   ewx
   ewy
   ewd

   compx
   compy
   compfv

   obj
;

xconvex..
sum(i, wx(i)) =e= 1;
yconvex..
sum
(j, wy(j)) =e= 1;
dconvex..
sum
(k, wd(k)) =e= 1;

ewx(i)..  wx(i) =e=
sum
(j, wgt(i,j));
ewy(j)..  wy(j) =e=
sum
(i, wgt(i,j));
ewd(k)..  wd(k) =e=
sum((i,j)$(ord(i)+ord(j)-1=ord
(k)), wgt(i,j));

compx.. xa =e=
sum
((i,j), xv(i,j)*wgt(i,j));
compy.. ya =e=
sum
((i,j), yv(i,j)*wgt(i,j));
compfv.. fa =e=
sum
((i,j), fv(i,j)*wgt(i,j));


obj..  z =e= YA + 15*XA;

fa.lo = 67;
xa.lo = 227;
xa.up = 229;



model m /all/
;
solve
m minimizing z using mip;

4 comments:

  1. Hi ! Can someone pleas explain the data in the table? where are they from ? I mean x, y and f?
    Thank you for your help in advance!

    ReplyDelete
  2. Hello Erwin,

    "Anonymous" is a friend of mine, and I must say that I also don't understand the table data very well. I would expect the following table if one wants to represent the surface with points (x_m, y_n, f_{m,n}), where m=1,2,3 and n=1,2,3:


    x y f
    i1.j1 x_1 y_1 f_{11}
    i1.j2 x_1 y_2 f_{12}
    i1.j3 x_1 y_3 f_{13}
    i2.j1 x_2 y_1 f_{21}
    i2.j2 x_2 y_2 f_{22}
    i2.j3 x_2 y_3 f_{23}
    i3.j1 x_3 y_1 f_{31}
    i3.j2 x_3 y_2 f_{32}
    i3.j3 x_3 y_3 f_{33}
    ;

    where you should replace the x_m and y_n and f_{mn} with specific numbers. But in the table on this site, there are 9 different y's, and not 3. How is that possible on a 3x3 grid?

    Thanks so much for any help! We try to implement a piecewise linear function in two variables in GAMS as part of a master thesis. Your site is awesome and so helpful! Congratulations!

    Pieter

    ReplyDelete
  3. I don't think the data points are required to form a grid.

    ReplyDelete