$ontext Olafur P. Pallson, Hans F. Ravn Scenario Analysis and the Progressive Hedging Algorithm - Simple Numerical Examples The Technical University of Denmark, 1993 $offtext set iter 'iteration number' /it0*it20/ n 'nodes' /I,II,III,IV, s1*s6/ s(n) 'scenarios: leaf nodes' /s1*s6/ t 'levels: dimension of x' /t1*t3/ dp(n) 'decision points in tree' /I,II,III,IV/ tt(t) "subset of t's used in current scenario" ; alias(n,nn,nnn); table tree(n,nn,*) value prob I.II 5 0.3 II.s1 6 0.2 II.s2 5 0.5 II.s3 2 0.3 I.III 2 0.7 III.s4 4 0.6 III.IV 7 0.4 IV.s5 6 0.1 IV.s6 4 0.9 ; display tree; * * do some tree manipulations here * set paths(s,n,nn) 'links on path to leaf node'; paths(s,n,s)$tree(n,s,'prob')=yes; scalar cnt; * repeat augment paths until no more change repeat cnt = card(paths); paths(s,nnn,n)$(sum(nn,paths(s,n,nn)) and tree(nnn,n,'prob')) = yes; until cnt=card(paths); option paths:0:0:1; display paths; set top(n) 'top of tree'; top(n)$(sum((s,nn)$paths(s,nn,n),1)=0) = yes; display top; parameter level(n) 'level of each node in tree'; level(top)=1; repeat cnt = card(level); loop(paths(s,n,nn)$level(n), level(nn) = level(n)+1; ); until cnt=card(level); display level; alias(t,tdown,tup); parameters sprob0(s,t) 'single probabilities' sprob1(s,t) 'accumulated probabilities' sval(s,t) 'values' ; sval(s,t) = sum(paths(s,n,nn)$(level(n)=ord(t)), tree(n,nn,'value')); display sval; sprob0(s,t) = sum(paths(s,n,nn)$(level(n)=ord(t)), tree(n,nn,'prob')); display sprob0; * accumulate probabilities backwards to get conditional probabilities sprob1(s,t)$sprob0(s,t) = prod(tdown$(ord(tdown)>=ord(t) and sprob0(s,tdown)), sprob0(s,tdown)); display "table 4a",sprob1; set stdp(s,t,dp) 'mapping to decision points'; stdp(s,t,dp)$sum(paths(s,dp,nn)$(level(dp)=ord(t)), 1) = yes; option stdp:0:1:2; display stdp; set tdp(t,dp) 'extracted from stdp for a given scenario'; parameter Xs(s,t) Ws(s,t) 'price' W(t) d(t) xhat(dp) 'conditional expectation' report(iter,*,*) 'table 1: results from iterations' x0(t) /t1 4/ ; Ws(s,t) = 0; w(t) = 0; xhat(dp) = 0; scalars iterno continue /1/ r 'penalty parameter'/0/ ; variables x(t) 'for submodel' z 'for submodel' ; equations obj ; obj.. z =e= sum(tt(t),0.5*sqr(x(t)-x(t-1)-x0(t))+sqr(x(t)-d(t))) + sum(tt(t),w(t)*x(t)) + 0.5*r*sum(tt(t),sqr(x(t)-sum(tdp(t,dp),xhat(dp)))); x.lo(t)=3; x.up(t)=6; model m /obj/; * reduce output and increase speed in loop m.solprint = 2; m.solvelink = %Solvelink.LoadLibrary%; option xhat:2; display xhat; set report_iter(iter) /it0*it5,it10,it15,it20/; parameter report_xhat(iter,dp) 'table 7'; loop(iter$continue, iterno = ord(iter); display '***** iteration ******',iterno; * r = 0 in first iteration (it0) r = 1$(iterno>1); * step 1 * solve each scenario Xs(s,t)=0; loop(s, d(t) = sval(s,t); tdp(t,dp) = stdp(s,t,dp); tt(t) = sum(tdp(t,dp),1); w(t) = ws(s,t); solve m minimizing z using nlp; Xs(s,tt(t)) = x.l(t); ); display Xs; * step 2 * Calculate policy Xhat xhat(dp) = sum(stdp(s,t,dp), Xs(s,t)*sprob1(s,t)); display Xhat; * step 3 * Update W Ws(s,t) = Ws(s,t) + r*(xs(s,t) - sum(stdp(s,t,dp),xhat(dp))); display Ws; report_xhat(iter,dp)$report_iter(iter) = xhat(dp); ); display report_xhat; |