$ontext
bayg29 29 city problem with five salesman
Erwin Kalvelagen, Amsterdam Optimization
References: Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations and solution procedures. OMEGA: The International Journal of Management Science, 34(3), 209-219.
$offtext
$set startcity i13
scalar m 'number of salesman' /5/ p 'number of cities to visit' /6/ ;
sets i /i1*i29/ ; alias (i,j);
table c(i,j) 'distance matrix (KM)'
i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 i21 i22 i23 i24 i25 i26 i27 i28 i29 i1 97 205 139 86 60 220 65 111 115 227 95 82 225 168 103 266 205 149 120 58 257 152 52 180 136 82 34 145 i2 129 103 71 105 258 154 112 65 204 150 87 176 137 142 204 148 148 49 41 211 226 116 197 89 153 124 74 i3 219 125 175 386 269 134 184 313 201 215 267 248 271 274 236 272 160 151 300 350 239 322 78 276 220 60 i4 167 182 180 162 208 39 102 227 60 86 34 96 129 69 58 60 120 119 192 114 110 192 136 173 173 i5 51 296 150 42 131 268 88 131 245 201 175 275 218 202 119 50 281 238 131 244 51 166 95 69 i6 279 114 56 150 278 46 133 266 214 162 302 242 203 146 67 300 205 111 238 98 139 52 120 i7 178 328 206 147 308 172 203 165 121 251 216 122 231 249 209 111 169 72 338 144 237 331 i8 169 151 227 133 104 242 182 84 290 230 146 165 121 270 91 48 158 200 39 64 210 i9 172 309 68 169 286 242 208 315 259 240 160 90 322 260 160 281 57 192 107 90 i10 140 195 51 117 72 104 153 93 88 25 85 152 200 104 139 154 134 149 135 i11 320 146 64 68 143 106 88 81 159 219 63 216 187 88 293 191 258 272 i12 174 311 258 196 347 288 243 192 113 345 222 144 274 124 165 71 153 i13 144 86 57 189 128 71 71 82 176 150 56 114 168 83 115 160 i14 61 165 51 32 105 127 201 36 254 196 136 260 212 258 234 i15 106 110 56 49 91 153 91 197 136 94 225 151 201 205 i16 215 159 64 126 128 190 98 53 78 218 48 127 214 i17 61 155 157 235 47 305 243 186 282 261 300 252 i18 105 100 176 66 253 183 146 231 203 239 204 i19 113 152 127 150 106 52 235 112 179 221 i20 79 163 220 119 164 135 152 153 114 i21 236 201 90 195 90 127 84 91 i22 273 226 148 296 238 291 269 i23 112 130 286 74 155 291 i24 130 178 38 75 180 i25 281 120 205 270 i26 213 145 36 i27 94 217 i28 162 i29 ;
c(i,j) = max(c(i,j),c(j,i));
set arcs(i,j); arcs(i,j)$c(i,j) = yes;
set i0(i) /%startcity%/;
set i2(i); i2(i)$(not i0(i)) = yes;
scalar n 'number of nodes'; n = card(i);
binary variables x(i,j); positive variables u(i); variable z;
equations start end assign1(i) assign2(j) sec(i,j) 'subtour elimination' cost ;
start.. sum(i2(j), x('%startcity%',j)) =e= m;
end.. sum(i2(i), x(i,'%startcity%')) =e= m;
assign1(i2(i)).. sum(arcs(i,j), x(i,j)) =e= 1;
assign2(i2(j)).. sum(arcs(i,j), x(i,j)) =e= 1;
sec(arcs(i,j))$(i2(i) and i2(j)).. u(i) - u(j) + p*x(i,j) =L= p-1;
cost.. z =e= sum(arcs, c(arcs)*x(arcs));
option optcr=0; option iterlim=10000000; option reslim=3600;
* use parallel MIP option threads=8; option mip=cplex;
model mtsp/all/; solve mtsp minimizing z using mip;
display x.l;
table xy(i,*) x y i1 1150.0 1760.0 i2 630.0 1660.0 i3 40.0 2090.0 i4 750.0 1100.0 i5 750.0 2030.0 i6 1030.0 2070.0 i7 1650.0 650.0 i8 1490.0 1630.0 i9 790.0 2260.0 i10 710.0 1310.0 i11 840.0 550.0 i12 1170.0 2300.0 i13 970.0 1340.0 i14 510.0 700.0 i15 750.0 900.0 i16 1280.0 1200.0 i17 230.0 590.0 i18 460.0 860.0 i19 1040.0 950.0 i20 590.0 1390.0 i21 830.0 1770.0 i22 490.0 500.0 i23 1840.0 1240.0 i24 1260.0 1500.0 i25 1280.0 790.0 i26 490.0 2130.0 i27 1460.0 1420.0 i28 1260.0 1910.0 i29 360.0 1980.0 ;
parameter tour(*,*); set kall/k1*k10000/; set kk(kall) /k1/;
loop((i,j)$(x.l(i,j)>0.5), tour(kk,'x0') = xy(i,'x'); tour(kk,'y0') = xy(i,'y'); tour(kk,'x1') = xy(j,'x'); tour(kk,'y1') = xy(j,'y'); kk(kall)=kk(kall-1); );
display tour;
|
hi , i saw your model seems very good, I know the mathematical model, heuristics, etc? are some examples for MDVRP? my email is juanmesab@gmail.com
ReplyDeleteFor larger problems a simple single model may not work. I used different techniques based on genetic programming for some large practical MDVRP problems. See: http://www.amsterdamoptimization.com/pic/vrpprototype.png.
ReplyDeleteHi! Great job, really! .
ReplyDeleteI´m working on a vrp with time windows and I think yours is a great starting point. I just can't see how you compute the distance from the coordenates.. is it eucliedan distance?... I am assuming that table xy(i,*) are city's coordenates, right?
Thanks!
XY are indeed the coordinates. Data comes from TSPLIB (bayg29).
ReplyDeleteHi, Erwin!!
ReplyDeleteI´m working on a vrp capacitated, and i´m trying to add the aditional constraint to the model you shared, but i´ve had problems because I need to create a table with more than two dimentions that shows me capacity and cost at the same time. Do you have and example that could be helpful for me?
Thank in advance, i apreciate your help.
Juan Pablo Castro
Hi, Erwin.
ReplyDeleteI´m working in a Vehicle Route Problem wiht Gams, but i have problems with subtour elimination constraints because I don´t know how to write it in Gams. Would you like to help me. My problem have 4 vehicules, 12 cities and 1 depot.
My imputs are demand for each city, distance between each city and capacity for each vehicle that is exactly the same for each one.
I´ll apreciate your help.
Thanks
Hola Enrique, estoy trabajando en un modelo con las mismas caracterÃsticas que las de tu modelo. Me puedes regalar si puedes el código, para compararlo con el mio, es que me arroja algunos problemas. Gracias
DeleteI am working on a similar cVRP problem with limited number of vehicles. Could anyone help me here?
ReplyDelete