## Tuesday, August 18, 2015

### Subset selection in regression

The following is a well-know application of branch-and-bound: select the k best independent variables to include in the regression. Often best means: best residual sum of squares. When we use a slightly different objective we can let the solver decide on k instead of fixing k in advance.

The paper:

shows the detailed MIQP model:

We could easily reproduce some of their results in GAMS.

First we load the data into our familiar y and X arrays:

Then we first solve a full OLS to get an estimate of the variance. We need to use the level of the SSQ variable from the solution:

Finally we run the MIQP on the Cp criterion:

Note that the n is a constant, so we could drop it from the objective and find the same optimal solutions. We keep it to make the objective interpretable as the Mallow’s Cp quantity.

Many of the data sets used in the paper contain columns with categorical data. In regression models these are typically handled by a set of dummy variables. When using stepwise regression or a method like MIQP we probably should include (or exclude) a whole block of dummy variables (corresponding to the same categorical variable) instead of considering them individually for inclusion. That makes the MIQP model a bit more complicated to express (but easier to solve).

The housing data set used above had just a single dummy variable. In this case there is no problem. Indeed we can reproduce the results quite easily. From the paper:

We have:

using the formulas:

For problems with real categorical data (with more than two levels), we want to adjust the model. In this case we introduce nlevels-1 dummy variables. These dummies belong to the same “block” as they refer to the same categorical variable. We can adapt the MIQP model in two ways:

1. Keep all j binary variables z and add equality constraints for the z’s belonging to the same block.
2. Generate only z(k) binary variables and bound all the beta’s belonging to the same block by the same z(k). I.e. we need to map from beta(j) to z(k).

As the paper notices, when we use  indicator constraints (Cplex, Xpress, SCIP), we could use implications so we don’t have to use a big-M constant

GAMS does not have language facilities to handle this (it allows indicator variables in a Cplex option file, but I feel uncomfortable if an option file – for tolerances and such things – changes the meaning of the model in such a substantial way). Ampl does this better by really having implications in the language.

I don’t really mind using big-M values. As these are essentially bounds on the decision variables, in practice we should be able to come up with a reasonable value.

Note

With some of the other data sets I am note sure how the paper arrives at their results. E.g. data set servo:

I.e. we have 4 independent variables, two of which are categorical (motor and screw, both with levels A through E). Pgain and vgain are numerical it looks like. The standard way to handle this in a regression model is to use 4 dummy variables each for the categorical variables motor and screw. Indeed this is what R does:

We see that level A does not generate a dummy variable (instead corresponds to all zeros in the other dummy variables B..E). Pgain and vgain are normal variables. I.e. we end up with a model with a total of p=10 variables (not counting the constant term).

In the paper however we see p=19:

My conjecture is that they did two things differently: the categorical variables are transformed using 5 dummy variables instead of 4; and the variables pgain and vgain are also considered as categorical variables and encoded using 4 and 5 dummies. It is interesting to see how even such a small data set can lead to confusion. How else can we arrive at p=19?

## Tuesday, August 4, 2015

### Cplex slides

##### Slides from ISMP 2015 by CPLEX Optimization Studio engine developers

A number of developers from both engines (CPLEX and CPO) in CPLEX Optimization Studio were in Pittsburgh mid-July for the ISMP 2015 conference. The slides that they presented are available on the IBM Decision Optimization community at https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W1a790e980a7d_49c5_963d_2965e5d01401/page/ISMP%202015

These presentations describe how CPO and CPLEX performance were improved in version 12.6.2:
- Handling of symmetries in LP
- Mathematical Programming with indicator constraints
- Failure-directed Search for Constraint-based Scheduling
- Accelerating the Development of Efficient CP Optimizer Models
- Max-Clique cuts
- Advances in CPLEX for Mixed Integer Nonlinear Optimization (12.6.2 is five times faster on MISCOP!)
- Advances in the CPLEX Distributed Solver

## Sunday, August 2, 2015

### MIQP root

Sometimes I see solver logs that makes me wonder… Here is an example:

 MIQP Presolve eliminated 1 rows and 1 columns. Reduced MIQP has 3400 rows, 10400 columns, and 2410400 nonzeros. Reduced MIQP has 8000 binaries, 0 generals, 0 SOSs, and 0 indicators. Reduced MIQP objective Q matrix has 2400 nonzeros. Presolve time = 1.77 sec. (674.81 ticks) Probing time = 0.16 sec. (93.32 ticks) Tried aggregator 1 time. Reduced MIQP has 3400 rows, 10400 columns, and 2410400 nonzeros. Reduced MIQP has 8000 binaries, 0 generals, 0 SOSs, and 0 indicators. Reduced MIQP objective Q matrix has 2400 nonzeros. Presolve time = 1.39 sec. (642.45 ticks) Probing time = 0.14 sec. (93.00 ticks) Clique table members: 1000. MIP emphasis: balance optimality and feasibility. MIP search method: dynamic search. Parallel mode: deterministic, using up to 8 threads. Tried aggregator 1 time. No QP presolve or aggregator reductions. Presolve time = 0.25 sec. (125.87 ticks) Parallel mode: using up to 8 threads for barrier. Number of nonzeros in lower triangle of A*A' = 2758800 Using Approximate Minimum Degree ordering Total time for automatic ordering = 1.63 sec. (3083.98 ticks) Summary statistics for Cholesky factor:   Threads                   = 8   Rows in Factor            = 3400   Integer space required    = 10400   Total non-zeros in factor = 3261700   Total FP ops to factor    = 3528593900 Itn      Primal Obj        Dual Obj  Prim Inf Upper Inf  Dual Inf             0  5.5332693e+006 -6.7421398e+006 1.19e+007 1.52e+005 1.77e+005    1  5.5332693e+006  5.4658298e+006 5.88e+004 7.49e+002 8.71e+002    2  5.5332693e+006  5.5328522e+006 2.83e+002 3.61e+000 4.19e+000    3  5.5332693e+006  5.5332673e+006 1.41e+000 1.79e-002 2.08e-002    4  5.5332693e+006  5.5332693e+006 6.99e-003 8.90e-005 1.04e-004    5  5.5332693e+006  5.5332693e+006 3.48e-005 4.43e-007 5.64e-007    6  5.5332693e+006  5.5332693e+006 2.14e-007 2.76e-009 5.25e-008 Barrier time = 5.64 sec. (8857.91 ticks) QP crossover.   Primal and Dual:  Fixing 7000 variables.    Elapsed crossover time = 7.16 sec. (10003.75 ticks, 5945 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 0.00000000e+000    Elapsed crossover time = 15.31 sec. (28552.30 ticks, 5569 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 0.00000000e+000    Elapsed crossover time = 23.23 sec. (46704.46 ticks, 5305 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 0.00000000e+000    Elapsed crossover time = 33.27 sec. (70188.45 ticks, 5054 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 0.00000000e+000    Elapsed crossover time = 45.64 sec. (98083.66 ticks, 4836 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 1.39261829e-008    Elapsed crossover time = 57.02 sec. (124653.14 ticks, 4730 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 4.31355147e-008    Elapsed crossover time = 67.73 sec. (150426.94 ticks, 4649 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 1.20840923e-007    Elapsed crossover time = 79.16 sec. (176647.52 ticks, 4545 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 6.72971510e-008    Elapsed crossover time = 90.33 sec. (202789.85 ticks, 4456 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 9.17043508e-008    Elapsed crossover time = 101.67 sec. (229293.76 ticks, 4372 Superbasics left)      Infeasibility:    Primal 1.47674096e+000     Dual 3.03520210e-007    Elapsed crossover time = 111.36 sec. (251686.98 ticks, 4363 Superbasics left)      Infeasibility:    Primal 1.47681465e+000     Dual 3.78158802e-007    Elapsed crossover time = 120.25 sec. (268368.05 ticks, 4354 Superbasics left)      Infeasibility:    Primal 1.47681459e+000     Dual 3.24780558e-007    Elapsed crossover time = 127.88 sec. (283908.42 ticks, 4240 Superbasics left)      Infeasibility:    Primal 5.93479732e-009     Dual 3.03358320e-007    Elapsed crossover time = 137.27 sec. (304459.09 ticks, 3989 Superbasics left)      Infeasibility:    Primal 6.44471580e-008     Dual 2.18300556e-007    Elapsed crossover time = 149.27 sec. (330999.89 ticks, 3756 Superbasics left)      Infeasibility:    Primal 9.82401907e-006     Dual 6.70703048e-006    Elapsed crossover time = 161.86 sec. (358315.84 ticks, 3719 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 9.16794306e-007    Elapsed crossover time = 172.38 sec. (383644.53 ticks, 3688 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 7.28524174e-006    Elapsed crossover time = 183.17 sec. (409268.61 ticks, 3649 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 1.75125388e-006    Elapsed crossover time = 193.80 sec. (434690.75 ticks, 3616 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 1.87935366e-005    Elapsed crossover time = 204.61 sec. (461215.00 ticks, 3576 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 1.03380080e-006    Elapsed crossover time = 215.09 sec. (486417.66 ticks, 3549 Superbasics left)      Infeasibility:    Primal 0.00000000e+000     Dual 1.98637099e-006    Elapsed crossover time = 225.89 sec. (513139.41 ticks, 3510 Superbasics left)      Infeasibility:    Primal 2.10855582e-001     Dual 2.02513729e-006    Elapsed crossover time = 236.05 sec. (535568.96 ticks, 3484 Superbasics left)      Infeasibility:    Primal 6.24493647e-003     Dual 1.52526445e-006 Markowitz threshold set to 0.1    Elapsed crossover time = 248.38 sec. (563321.19 ticks, 3333 Superbasics left)      Infeasibility:    Primal 3.36909296e-003     Dual 4.77023950e-005    Elapsed crossover time = 318.11 sec. (751201.40 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.12025977e+003     Dual 4.75232446e-005    Elapsed crossover time = 330.94 sec. (789219.13 ticks, 3333 Superbasics left)      Infeasibility:    Primal 9.59407700e-002     Dual 4.77066314e-005    Elapsed crossover time = 343.88 sec. (825357.13 ticks, 3333 Superbasics left)      Infeasibility:    Primal 9.59800219e-002     Dual 6.33971104e-005    Elapsed crossover time = 358.42 sec. (864523.87 ticks, 3333 Superbasics left)      Infeasibility:    Primal 9.34496411e-002     Dual 3.14321933e-005    Elapsed crossover time = 372.47 sec. (904729.79 ticks, 3333 Superbasics left)      Infeasibility:    Primal 9.34088085e-002     Dual 1.75639834e-005    Elapsed crossover time = 388.09 sec. (943680.90 ticks, 3333 Superbasics left)      Infeasibility:    Primal 5.46198930e-002     Dual 9.53896961e-006    Elapsed crossover time = 403.11 sec. (984367.15 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.90653794e-002     Dual 8.91545915e-005    Elapsed crossover time = 415.58 sec. (1020067.24 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.89335895e-002     Dual 2.41810067e-005    Elapsed crossover time = 429.14 sec. (1058618.75 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.84690980e-002     Dual 3.90030436e-005    Elapsed crossover time = 442.63 sec. (1097715.44 ticks, 3333 Superbasics left)      Infeasibility:    Primal 9.78869120e+004     Dual 5.68837444e+003    Elapsed crossover time = 456.14 sec. (1134758.50 ticks, 3333 Superbasics left)      Infeasibility:    Primal 4.67225351e+004     Dual 5.77386458e+003    Elapsed crossover time = 470.00 sec. (1172495.60 ticks, 3333 Superbasics left)      Infeasibility:    Primal 5.53826983e+004     Dual 6.83817634e+003    Elapsed crossover time = 486.74 sec. (1215601.97 ticks, 3333 Superbasics left)      Infeasibility:    Primal 9.41979528e+004     Dual 1.17608258e+004    Elapsed crossover time = 500.95 sec. (1251898.93 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.39769777e+005     Dual 3.00622953e+004    Elapsed crossover time = 515.22 sec. (1289115.60 ticks, 3333 Superbasics left)      Infeasibility:    Primal 4.88061211e+003     Dual 7.54748835e+002    Elapsed crossover time = 529.25 sec. (1327038.38 ticks, 3333 Superbasics left)      Infeasibility:    Primal 4.88061211e+003     Dual 7.54748835e+002    Elapsed crossover time = 542.24 sec. (1357677.33 ticks, 3333 Superbasics left)      Infeasibility:    Primal 3.65324988e+003     Dual 1.26132745e+003    Elapsed crossover time = 552.99 sec. (1386459.18 ticks, 3333 Superbasics left)      Infeasibility:    Primal 3.65324988e+003     Dual 1.26132745e+003    Elapsed crossover time = 565.88 sec. (1418048.64 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.16480240e+003     Dual 1.91691257e+003    Elapsed crossover time = 579.27 sec. (1453911.63 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.16353933e+003     Dual 1.91678103e+003    Elapsed crossover time = 588.53 sec. (1480497.42 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.16353933e+003     Dual 1.91678103e+003    Elapsed crossover time = 597.89 sec. (1504777.31 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.90094988e+003     Dual 1.14836471e+004    Elapsed crossover time = 604.97 sec. (1521009.73 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.90129768e+003     Dual 1.15904573e+004    Elapsed crossover time = 611.22 sec. (1536795.42 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.90129768e+003     Dual 1.15904573e+004    Elapsed crossover time = 616.67 sec. (1551877.10 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.90773276e+003     Dual 1.17815647e+004    Elapsed crossover time = 622.81 sec. (1567277.44 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.90773276e+003     Dual 1.17815647e+004    Elapsed crossover time = 627.38 sec. (1580302.78 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.89426710e+003     Dual 1.07900064e+004    Elapsed crossover time = 631.66 sec. (1591985.82 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.87985719e+003     Dual 1.00576739e+004    Elapsed crossover time = 637.89 sec. (1609258.08 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.90150876e+003     Dual 7.31013617e+003    Elapsed crossover time = 642.83 sec. (1622767.95 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.90150876e+003     Dual 7.31013617e+003    Elapsed crossover time = 647.22 sec. (1635731.36 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.86842002e+003     Dual 7.13853235e+003    Elapsed crossover time = 652.58 sec. (1650655.52 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.84100817e+003     Dual 1.21837103e+004    Elapsed crossover time = 657.20 sec. (1663498.01 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.76000240e+003     Dual 2.90792871e+004    Elapsed crossover time = 662.86 sec. (1679982.33 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.85701960e+003     Dual 7.13495764e+003    Elapsed crossover time = 667.89 sec. (1691903.10 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.96317658e+004     Dual 5.10543645e+005    Elapsed crossover time = 671.80 sec. (1703072.56 ticks, 3333 Superbasics left)      Infeasibility:    Primal 4.03036288e+004     Dual 1.07718950e+006    Elapsed crossover time = 675.69 sec. (1714438.25 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.16603817e+003     Dual 2.76079763e+004    Elapsed crossover time = 680.95 sec. (1728011.91 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.41650804e+003     Dual 2.61412656e+004    Elapsed crossover time = 684.88 sec. (1738262.56 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.92877479e+003     Dual 4.13609774e+004    Elapsed crossover time = 689.19 sec. (1748946.49 ticks, 3333 Superbasics left)      Infeasibility:    Primal 1.25701941e+004     Dual 1.56358766e+005    Elapsed crossover time = 694.44 sec. (1761372.46 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.31800356e+003     Dual 1.89475266e+004    Elapsed crossover time = 699.81 sec. (1772146.05 ticks, 3333 Superbasics left)      Infeasibility:    Primal 6.42620370e+003     Dual 5.49984245e+004    Elapsed crossover time = 705.53 sec. (1782843.13 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.15767429e+006     Dual 1.75141610e+007    Elapsed crossover time = 711.47 sec. (1793058.87 ticks, 3333 Superbasics left)      Infeasibility:    Primal 2.21269742e+003     Dual 8.03297651e+004    Elapsed crossover time = 718.33 sec. (1803421.24 ticks, 3333 Superbasics left)      Infeasibility:    Primal 7.53001991e+005     Dual 2.93476689e+007    Elapsed crossover time = 725.44 sec. (1813741.70 ticks, 3332 Superbasics left)      Infeasibility:    Primal 1.24805125e+004     Dual 1.29957987e+006    Elapsed crossover time = 732.19 sec. (1823771.99 ticks, 3332 Superbasics left)      Infeasibility:    Primal 3.17114125e+003     Dual 4.33555604e+005    Elapsed crossover time = 738.59 sec. (1833802.22 ticks, 3332 Superbasics left)      Infeasibility:    Primal 6.00998749e+006     Dual 1.02118829e+009    Elapsed crossover time = 745.03 sec. (1843805.29 ticks, 3332 Superbasics left)      Infeasibility:    Primal 3.79317034e+006     Dual 6.44532210e+008    Elapsed crossover time = 751.81 sec. (1854167.14 ticks, 3332 Superbasics left)      Infeasibility:    Primal 5.03251939e+005     Dual 2.28553099e+008    Elapsed crossover time = 758.20 sec. (1864411.09 ticks, 3332 Superbasics left)      Infeasibility:    Primal 3.03520837e+006     Dual 8.01584368e+008    Elapsed crossover time = 764.67 sec. (1874969.68 ticks, 3332 Superbasics left)      Infeasibility:    Primal 4.65210530e+006     Dual 4.55334749e+009    Elapsed crossover time = 770.52 sec. (1885177.76 ticks, 3332 Superbasics left)      Infeasibility:    Primal 4.97860595e+007     Dual 8.99304928e+010    Elapsed crossover time = 776.05 sec. (1895242.21 ticks, 3332 Superbasics left)      Infeasibility:    Primal 3.99168883e+007     Dual 3.21266821e+011   Primal:  Pushed 48, exchanged 4653.   Dual  :  Pushed 0, exchanged 4691. Warning: Crossover terminates with a singular basis.

I.e. 5 seconds to solve the relaxed qp and then spending 775 seconds in the crossover (without a good result)!

It is good to see that there is progress in this area (quadratic related optimization). E.g. from a recent presentation:

(http://www.slideshare.net/IBMOptimization/euro-2015-nodet). In general my feeling is that quadratic solvers are not as mature as linear solvers, and occasional show erratic behavior. As I see typically difficult models (for easy ones users don’t need my help), I encounter issues like these more than I care for.